

An general introduction to optical stellar interferometry and VLTI in particular

Antoine Mérand - VLTI programme scientist

amerand@eso.org - Office 5.16

The Very Large Telescope ontop Cerro Paranal (Chile)

International and the VLTI state of the VLTI and the

How did we get there?

Introduction to VLTI - July 2019 3

■ Collecting area

 \triangleright The larger the surface, the more sensitive the telescope

Angular resolution

 \triangleright Smallest detail detectable

Field of view

 \triangleright How many objects?

Angular separation

Diffraction in a telescope

http://en.wikipedia.org/wiki/Huygens%E2%80%93Fresnel_principle

Introduction to VLTI - July 2019

Point spread function

A circular aperture produces a so-called Airy pattern. Its first null has an angular radius of 1.22λ/D

- D: diameter of the telescope
- λ: wavelength of observation

Order of magnitudes

- \blacksquare 1.22 $\lambda/D = 8.4e-8$ radians for an D=8m telescope in the visible (λ=550nm)
- **Unit of small angle is the** arcsecond (")
	- ≥ 1 " = π /180/3600 = 4.85e-6 radian
	- ≥ 1 mas = 0.001" = 4.85e-9 radian
- \blacksquare 1.22 $\lambda/D = 0.017$ " (=17mas) for an D=8m telescope in the visible (λ=550nm)

Point Spread Function

How good is 1" resolution?

By definition,

- ≥ 1 astronomical unit (150x10⁶km) seen from a distance of 1 parsec (~3.2 light years)
- From the closest star (proxima Cen, $d=1.3pc$):
	- \triangleright The Sun appears 0.007"=7 mas
	- \triangleright Sun-Earth distance is \sim 0.8"
- Closest star forming regions at d~140pc:
	- ≥ 1 " is 140AU ~ 3x Pluto's orbit
	- ≥ 0.017 " is 2.4AU ~ asteroid belt

Atmospheric effects

Atmospheric turbulence limits angular resolution to \sim 0.5" in the visible (independent of telescope diameter)

Plane waves from distant point source

ES

The highest angular resolution?

Introduction to VLTI - July 2019

Reaching higher angular resolution

How do we free ourselves of atmospheric seeing? \triangleright Adaptive optics

How do we go beyond the limitation of the single aperture telescope?

Diffraction of partial apperture

Young's double slit experiments

- \blacksquare a1+b1 a2+b2: optical path difference
- **In phase: White fringe** \geq (a1+b1-a2-b2)%λ = 0
- **Out of phase: Dark fringe** \geq (a1+b1-a2-b2)% λ = λ /2
	- <http://www.falstad.com/ripple/>

Spatial information in fringes

- \vec{s} direction to the object **Optical path difference** \triangleright \vec{s} . $\vec{B} = B \sin(\alpha) \approx \alpha B$
- **Phase of the fringes contains** information about \vec{s} (α)
- 1 Fringe corresponds to $\vec{s} \cdot \vec{B} (\approx \alpha B) = \lambda \Rightarrow \alpha \approx \lambda / B$
- **Phase of the fringes:** $2\pi\alpha B/\lambda$

Object's geometry affects the phase and amplitude of the fringes

Fringe patterns for each point in the object add up in the focal plane and produce a fringe pattern with reduced contrast: **resolved <> reduced fringe contrast**

Introduction to VLTI - July 2019

Proper formulation

The fringes' amplitude and phase is called the complex visibility

- **Baseline vector** $\vec{B} = (u, v)$ [same unit as λ]
- Pointing vector $\vec{s} = (x, y)$ [in rad]
- **The complex visibility is the normalized Fourier** transform of the image $I(x,y)$:

$$
V(u, v, \lambda) = \frac{\iint I(x, y)e^{-2\pi i(xu + yv)/\lambda}dxdy}{\iint I(x, y)dxdy}
$$

[Van Cittert – Zernike Theorem]

Single baseline gives very limited information

Binaries separated by α , 2α , 3α , … have same fringe pattern for a given B

I Image is 2D and baseline is 1D

Centro-symmetric images

For a centro-symmetric image, Fourier transform becomes an Hankel transform:

$$
V(B,\lambda) = \frac{\int I(r,\lambda)J_0(rB/\lambda) r dr}{\int I(r,\lambda) dr}
$$

$$
V_{\rm UD}=2\frac{J_1(x=\pi B\theta/\lambda)}{x}
$$

Recover the phase information

The atmosphere induces phase jitter >> 2π

■ Sum of phases in a triangle are immune to the turbulence: closure phase

$$
CP = (\phi_{12} + \phi_{a}) + \phi_{23} + (\phi_{31} - \phi_{a})
$$

= $\phi_{12} + \phi_{23} + \phi_{31}$

Binary star

3 Telescopes with several spectral channels (e.g. VLTI/AMBER) allow to un-ambiguously measure a binary separation and flux ratio.

 $\frac{1}{\sqrt{2}}$ $\frac{x}{y}$

2

Early history

- **H.** Fizeau (1868): first idea of stellar interferometry
- E. Stéphan (1874): upper limit of size of stars using 65 cm telescope
- **A.** Michelson & F. Pease (1921): measure the first angular diameter of a star (Betelgeuse) using a 6 m interferometer

<http://articles.adsabs.harvard.edu/pdf/1921ApJ....53..249M>

1970's: The rebirth

<http://articles.adsabs.harvard.edu/pdf/1975ApJ...196L..71L>

Late 1970's at ESO: what to build after La Silla's 3.6m?

- 1977: ESO will build a 16m Telescope (or 4x8m, or 16x4m)
- 1981: ESO conference "Scientific Importance of High Angular Resolution at Infrared and Optical Wavelengths"
- 1986: decision to build four 8m Telescopes with 3 modes:
	- \triangleright Standalone
	- \triangleright Incoherent
	- \triangleright Coherent

"While the concensus viewpoint seemed to support the view that the emphasis for postconventional telescopes should lie in the incoherent addition of more photons from bigger systems, a strongly vocal minority was clearly convinced that techniques using phase information should not be neglected" Messenger p2, #12 (1978)

Converging on a design

Introduction to VLTI - July 2019 2019

 $+$ ES

Principles of operations

Introduction to VLTI - July 2019 2019

Delay Line

Introduction to VLTI - July 2019 28

Telescopes

VLTI instruments (4T)

<https://www.eso.org/sci/facilities/paranal/instruments.html>

PIONIER

 \triangleright H band (λ ~1.6µm), R~50

GRAVITY

- \triangleright K band (λ ~2.2µm), R~20, 500 and 4000
- \triangleright Fringe tracker (up to 2" off-axis)

MATISSE

 \triangleright L,M,N bands (λ ~3 to 12µm), R~30, 500, 1000 amd 3500 **▶ GRAVITY as a fringe tracker**

Spectral capabilities

Eta Car (LBV) GRAVITY spectrum (Gravity Collaboration 2018)

Introduction to VLTI - July 2019 31

Differential visibilities

CO lines in Mira-type star (Wittkowski+ 2018)

Differential phases

- Spectro-interferometry gives complementary information to spectroscopy
- **Fringes' contrast drops** as object gets resolved
- **Fringes differential** phase follow the photocenter

Differential phase application

- Measuring the orbital motion of the Broad Line Region in the quasar $3C273$ ($z=0.158$)
- Knowing the distance, the mass of the central object can be estimated: 2.6 ± 1.1 10⁸ M_☉

3C273 modeling

+ + BK

Beating the diffraction?

BLR of 3C273 found to be $46\pm10\mu$ as

\blacksquare λ /B = 2.2 μ m/140m ~ 3.2mas

Introduction to VLTI - July 2019 36

Beating the diffraction?

- Differential phase is measured better than 0.1^o
- 360° of phase corresponds to 1 wavelength
- Differential phase is measured better than λ/3600
- Actual resolution for 0.1^o is λ /B/3600 ~ 1 µas

Diffraction limit

- **Definitions for a telescope of** diameter D:
	- \triangleright Airy pattern first null at radius 1.22λ/D
	- \triangleright Aperture is a lowpass (spatial) filter of cutoff λ/D
- **Limitation depends how well you** know / sample your PSF
- **Telescopes can achieve** differential astrometry << 1.22λ/D

Imaging reconstruction

- Full aperture $==$ low pass filter (up to λ/D)
- In practice, (u,v) plane is sparsly filled
	- \triangleright nT = n(n-1)/2 baseline, (n-1)(n-2)/2 closure phases
- **N** Visibility interpolation and regularisation (priors) are needed:
	- \triangleright edge-preserving smoothness, total variation, maximum entropy, etc.
- **Very useful when the morphology is not well known complex**

Limitations:

- \triangleright Largest to smallest scales: λ /B_{max} -> λ /B_{min}
- \triangleright Number of pixels ~ $(B_{\text{max}}/B_{\text{min}})^2$
- \triangleright Dynamic range \sim 1/precision on Visibility

Imaging at VLTI

Moveable telescopes in three 4T configurations B_{min} =8m to B_{max} =130m \rightarrow ~16x16 image

Some VLTI images

Introduction to VLTI - July 2019 41

Do I always need imaging?

 1.0

 0.5

 -0.5

 -1.0

 -0.5

 0.0

x/Re

 0.5

 ξ 0.0

Different approachs:

- \triangleright Morphological fit
- ØPhysics based model (simulation)
- **Additional observables very** useful (photometry, spectroscopy…)
- **Notainally Visibilities can be modelled** and parameters fitted

200
Baseline PA (deg)

HD 45677

Galactic Centre

Resolving a binary in astrometry and radial velocity gives the mass and the distance

Best distance and mass to the Galactic Centre

Detection of gravitational reddening around Sgr A*

Radial velocity deviation to the apparent orbit:

Credit: ESO/M. Kornmesser

Detection of LSCO around Sgr A*

Material falling on the last stable circular orbit around the black hole

Spin orbit alignment

Is a star co-rotating with the debris disk and planets?

Le Bouquin+ 2009

Spectroscopy and astrometry of exoplanets

on astrometry and spectral resolution compared to AO

GRAVITY Collaboration+ 2019

Complementarity

AO imaging, ALMA

- \triangleright probes (slightly) larger scales
- \triangleright Inner/outer disk orientation (warping)
- Spectroscopy
	- ØLocalise processes
	- \triangleright binaries

SED

 \triangleright L $\propto R^2 T_{\rm eff}^4$

Unmatched angular resolution

- \triangleright Imaging with ~1mas resolution (λ /B)
- ØHigh angular astrometry (can be <<λ/B, ~50μas)
- \triangleright Spectroscopic capabilities
- **Limitations:**
	- \triangleright Sensitivity compared to imaging / spectroscopy
	- \triangleright Dynamic range of few 100
	- \triangleright Field of View == diffraction limit of the telescope (UTs~50mas; ATs~250mas)

To go further

■ 2020 VLTI School (to be announced)

- Ø<http://www.european-interferometry.eu/training>
- **Introduction from a past School:**
	- Ø<https://arxiv.org/abs/1907.07443>

