

Nulling interferometry

Denis Defrère KU Leuven

June 28th, 2024

Overview

- Principles of nulling interferometry
- Current and past nulling interferometers
- Science with nulling interferometers
- Space nulling interferometers: concepts and science
- Summary

Principles of interferometry

www.www.www.www.ww www.www.www.www.www mmmmmmmmmmmmmm

Coherence time = $\Delta t = \frac{\lambda^2}{c \Delta \lambda}$

Coherence length = $L = \frac{\lambda^2}{\Delta \lambda}$

3 Image credit: ESO

Principles of interferometry

Principles of nulling

• First proposed by Bracewell in 1978 to image non-solar planets with a rotating nuller (Nature, 274, 1978):

Transmission map (2T)

Principles of nulling

• First proposed by Bracewell in 1978 to image non-solar planets with a rotating nuller (Nature, 274, 1978):

Transmission map (2T)

Example of closed-loop nulling at the LBTI

https://www.youtube.com/watch?v=WdZEjOtqVmM

۳

Bracewell 1978: "*a rotating nulling interfertometer to detect non-solar planets"*

Overview

- Principles of nulling interferometry
- Current and past nulling interferometers
- Science with nulling interferometers
- Space nulling interferometers: concepts and science
- Summary

First generation: MMT

• First on-sky telescope implementation by Hinz et al. in 1998 on the Multiple Mirror Telescope in Arizona (Hinz et al., Nature, 395, 1998):

Multiple Mirror Telescope – Mount Hopkins (Arizona)

First generation: MMT

• First on-sky telescope implementation by Hinz et al. in 1998 on the Multiple Mirror Telescope in Arizona (Hinz et al., Nature, 395, 1998):

KU LEUVEN erc

Second generation: Keck Nuller

• First telescope implementation of a four-beam interferometric nuller (Colavita et al. 2010, Serabyn et al. 2012);

Keck telescopes – Mauna Kea (Hawaii)

Key instrumental features:

- Waveband: N (8 to 13 microns)
- Spectral resolution: 20 (providing 10 spectral channels across the N band)
- Spatial resolution 10 mas at 8 microns to 15 mas at 13 microns (defined as the nuller's 50% transmission point)
- Sensitivity of 1.5 Jy at 10 microns
- Effective field of view: $0.4'' \times 0.1''$ (in radius)

Second generation: Keck nuller

Second generation: Keck nuller

15

The Large Binocular Telescope Interferometer (LBTI, Hinz et al. 2016, Ertel et al. 2020);

Large Binocular Telescope – Mount Graham (Arizona)

Key instrumental features:

- Waveband: N (8 to 13 microns)
- Spectral resolution: broadband (grism R=100 not commissioned for nulling)
- Spatial resolution: 60 mas at 8 microns to about 100 mas at 13 microns (defined as the nuller's 50% transmission point)
- Sensitivity of 0.8 mJy at 10 microns (5σ in 1 hour)
- Effective field of view: 18" x 18"

Resolution

Beam combination provides the equivalent resolution of a 22.7-m telescope.

High Contrast

The AO system creates an image with a Strehl of >90% at 3.8 µm.

Sensitivity

LBT has two 8.4-m mirrors mounted on a single structure (collecting area of a single 11.8-m aperture)

Single-aperture nulling experiments

- Palomar Fiber Nuller (PFN): K band (2.2 microns), multi-axial combination, fiber injection (Mennesson et al. 2011)
- GLINT @ SCExAO: H band (1.6 microns), first on-sky photonic nuller (Norris et al. 2019)

Subaru telescope (left) – Mauna Kea (Hawaii)

Next-generation: Asgard/NOTT

Next-generation: Asgard/NOTT

Cerro Paranal (Chile)

Recommended as visitor instrument in June 2023 (Defrère et al. 2018, 2022, 2024)

Key instrumental features:

- Waveband: L' (3.5 to 4 microns)
- Spectral resolution: 40, 200
- Spatial resolution: 2 mas with 200m baseline (defined as the nuller's 50% transmission point)
- Effective field of view: \sim 100mas (UT), \sim 400mas (AT)

Next-generation: Asgard/NOTT

First warm nulls in 2024 (Garreau et al. 2024)

27

Inputs

Next-generation: Asgard/NOTT

Outputs

GLS (developped at Macquarie University and tested at Univerity of Cologne). Prototype also

manufactured in $LiNbO₃$ and SiO

J LEUVEN

28

Nulling at the VLTI

Atmospheric limit (Uts, K=1, FT@1kHz, Courtney-Barrer et al. 2022)

Overview

- Principles of nulling interferometry
- Current and past nulling interferometers
- Science with nulling interferometers
- Space nulling interferometers: concepts and science
- Summary

Highlights from the KIN

- •Evolved stars with known dust: RS CrB and TU Tau (Mennesson et al. 2005)
- •Evolved stars with suspected dust: X Gem and RS Oph (Barry et al. 2008)
- •Young debris disks (e.g., Stark et al. 2009)
- •Young stellar objects (Mennesson et al. 2012)
- •Exozodiacal disks:
	- Individual stars: Fomalhaut (Lebreton et al. 2013, Mennesson et al. 2013, eta Crv (Defrère et al. 2015), eta Crv (Lebreton et al. 2016)
	- Survey results (Millan-Gabet et al. 2011, Mennesson et al. 2014)

Exozodiacal dust

- Dust inside a few AU
- Temperature: a few 100K to 2000K (Kimura & Mann 1998, Hahn et al. 2002)
- Comet evaporation (Nesvorny et al. 2010)
- Asteroid collision & P-R drag (Dermott et al. 2002)
- Complex local structure (planetary interaction, local dust creation)

Exozodiacal dust

Exozodiacal dust

Reduce exozodi by 10x, increase yield by \sim 2x

Stark et al., 2014, 2015

Prevalence of exozodiacal dust

Ertel et al. 2020: *The majority of Sun-like stars have relatively low HZ dust levels (best-fit median: 3 zodis, 1 σ upper limit: 9 zodis, 95% confidence: 27 zodis based on our N band measurements), while* [∼]*20% are significantly*

WISE: Kennedy et al. (2013) KIN: Mennesson et al. (2014) LBTI: Ertel et al. (2018, 2020)

Correlation with outer cold belt

An example: b **Leo**

Exoplanet imaging with VLTI

Exoplanet imaging with nulling at VLTI

Exoplanet imaging with nulling at VLTI

Exoplanet imaging with nulling at VLTI

Exoplanet parameter space and yield

- Exoplanet yield prediction based on latest GAIA young star catalog (J. Gagné priv. comm) and core accretion model (Bern model)
- Approximately 5 young giant exoplanets detected by GAIA can be characterized
- Mostly young giant exoplanets near the snow line
- Performance based on Laugier et al. (2023)

Exoplanet parameter space and yield Exoplanet imaging with nulling at VLTI

- Exoplanet yield prediction based on latest GAIA young star catalog (J. Gagné priv. comm) and core accretion model (Bern model)
- Approximately 5 young giant exoplanets detected by GAIA can be characterized
- Mostly young giant exoplanets near the snow line
- Performance based on Laugier et al. (2023)

Overview

- Principles of nulling interferometry
- Current and past nulling interferometers
- Science with nulling interferometers
- Space nulling interferometers: concepts and science
- Summary

Exoplanet mission landscape

ESA's science vision

From temperate exoplanets to the Milky Way "…the characterisation of temperate exoplanets in the mid-infrared, through a first spectrum of direct thermal emission from exoplanet atmospheres to better understand if they harbour truly habitable surface conditions, would be an outstanding breakthrough".

Voyage 2050

Final recommendations from the Voyage 2050 Senior Committee

Joyage 2050 Senior Committee: Linda J. Tacconi (chair), Christopher S. Arridge (co-chair), sandra Buonanno. Mike Cruise. Olivier Grasset. Amina Helmi. Luciano less. Eiichiro Komatsu. ny Leconte, Jorrit Leenaarts, Jesús Martín-Pintado, Rumi Nakamura, Darach Watso

May 2021

Requirements

Requirements

1. Angular resolution D required for IWA (2 λ **/D) = 10mas:**

- Visible (550nm): ~24m
- Infrared (10μ m): ~400m

Requirements

Large Interferometer For Exoplanets (LII

Key instrument

- \circ Mid-infrared (4 to
- o Spectral resoluti \circ Formation flying
- and collision avo \circ Imaging baseline
	- (TBD)
- o Passive cooling (noise detectors
- o Ultra-stable nulli with fine metrold tip/tilt)
- o Optimized beam strategies

See more information and references on: https://life-space-mission.com

Large Interferometer For Exoplanets (LIFE)

LIFE beam combination scheme

Defrère et al. 2010

Lab demonstration at JPL

Nulling on single spacecraft

- Mid-IR single-spacecraft nuller
- Can fit in Ariane 6 fairing (baselines \sim 15m)
- Technology demonstration mission (reduce risks)
- Science precursor (nearby planets that can be resolved)

Summary

- Three generations of nulling interferometers developped in the US over the past 25+ years with key results on exozodiacal disks
- Current state-of-the-art contrast performance: 10⁻⁴ (both K and N bands)
- New project for the VLTI (Asgard/NOTT, visitor), with a strong exoplanet science case
- Strong exoplanet science case for nulling in space and mission concepts being investigated (e.g., LIFE)

Summary

- Interferometry is a direct imaging technique, complementary to AO imaging
- Nulling interferometry to remove the stellar light, like coronagraphy for singledish imaging
- Several ground-based nulling instruments (MMT, Keck nuller, LBTI), proved key technologies and shed new light on exozodiacal disks
- Asgard/NOTT, ERC-funded project under development for the VLTI (to image young exoplanets near the snow line)
- Space nulling required for the direct characterization of a large sample of rocky exoplanets

Further references

- Unveiling exozodiacal light (includes the history of nulling, Spalding et al. 202
- Review and scientific prospects of high-contrast optical stellar interferometry (Defrère et al. 2020): link
- Theory of nulling interferometry (Serabyn): link
- LIFE space mission website: life-space-mission.com
- Asgard/NOTT website: denis-defrere.com/asgard.php
- More information: denis-defrere.com/teaching.php